On Five- vs Six-membered Diacetal Formation from Threitol and the Intermediacy of Unusually Stable Protonated Species ${ }^{1}$

Mikhail Grabarnik, N. Gabriel Lemcoff, Ravit Madar, Sarah Abramson, Sarah Weinman, and Benzion Fuchs*
School of Chemistry (Raymond and Beverly Sackler Faculty of Exact Sciences), Tel-Aviv University, Ramat-Aviv, 69978 Te-Aviv, Israd

Received J une 2, 1999
The long known, but hitherto poorly understood, thermodynamically controlled diacetalation of rac-threitol with alkylaldehydes provided bicyclic, cis-tetraoxadecalin (TOD) ("66") and bi(dioxolanyl) (BDO) ("55") products, shown to be formed in acid-concentration and temperature-dependent ratio. The configurational and conformational isomeric diacetals obtained in four such reactions of substituted aldehydes ($\mathrm{RCHO}, \mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Br}, \mathrm{CO}_{2} \mathrm{CH}_{3}$) with rac-threitol were isolated and characterized. A variable acid-concentration analysis of the equilibrium mixture of products in one such case ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{Br}$) was performed and provided equilibrium constants and, hence, freeenergy differences among these products and their relatively stable protonated intermediates. The latter were rationalized by the unusually high proton-affinity calculated for the cis-TOD ("66") form.

Introduction

The condensation of a 1,2,3,4-tetrahydroxybutane with formaldehyde under acid catalysis can take place in 1,2;3,4-, 1,3;2,4-, or 1,4;2,3-fashion to give bicyclic diacetals "55", "66", or "57", respectively, which are formed in a stereospecific manner (Scheme 1). The most significant and ubiquitous ones are the " $\mathbf{6 6}$ " type compounds, namely, the trans- and cis-1,3,5,7-tetraoxadecalin (TOD) ${ }^{6}$ system (Scheme 2), formed from erythritol or threitol, respectively. ${ }^{2-6}$ The conformationally stable form of the trans isomer is a configurationally fixed double-chair, while the cis isomer can exist in two possible diastereoisomeric chair-chair forms, Oinside ($\mathbf{O}_{\mathbf{i n}}$) and Ooutside $\left(\mathbf{O}_{\text {out }}\right)$. These can interconvert by conformational ring inversion ($\mathbf{O}_{\mathbf{i n}} \rightleftharpoons \mathbf{O}_{\text {out }}$) (Scheme 2), but bias can be

[^0]Scheme 1. Stereospecific Reaction Products of Erythritol and rac-Threitol with Formaldehyde

meso-erythritol

tol

D-threitol

"55"
erythro

"55"
"57"
trans

Scheme 2. Diastereomeric 1,3,5,7-tetraoxadecalin (TOD) System

TOD:

"66"
trans

introduced by substitution in the 2,6 positions. Thus, two 2,6-diequatorially substituted $\mathbf{O}_{\mathbf{i n}}$ and $\mathbf{O}_{\text {out }}$ may undergo conformational interconversion only by chemical (acidcatalyzed) isomerization. It was shown that $\mathbf{O}_{\text {in }}$ is energetically preferred in the parent molecule and in simply substituted derivatives, ${ }^{2,6}$ but purposeful substitution in the 4,8 or 9,10 positions may alter this order of stability. ${ }^{3-5}$

These systems have been studied most in the carbohydratefield, ${ }^{4,6 e, 7}$ where they occur most often. A number of significant contributions have al so been made toward the understanding of the stereochemical and conformational features of these, mainly "66" diacetals, substituted in the 4(8) or 9(10) positions. ${ }^{3-6}$ However, while the erythritol diacetal formation and isomerism had been well investigated, ${ }^{2,4,7}$ in particular by Burden and Stoddart, ${ }^{4}$ there was no detailed documentation on the isomerism of threitol diacetals. Generally, the reaction

Scheme 3. Acetalation Reaction Products of D-Threitol with Substituted Acetaldehydes

$\mathbf{a}: X=\mathrm{H} ; \mathbf{b}: X=\mathrm{Cl} ; \mathbf{c}: X=\mathrm{Br}$
with substituted aldehydes had been commonly taken to be selective, in yielding only 2,6-diequatorially substituted " $\mathbf{6 6}$ " acetals in their cis- $\mathbf{O}_{\text {in }}$ forms, based on the behavior of aromatic aldehydes.

We have been dealing with such systems in connection with our probes of new types of host systems based, inter alia, on cis-1,3,5,7-TOD "core" units. ${ }^{6}$ The problem we have encountered in the course of these studies was the lack of information concerning the preparative details of this, apparently simple, acetalation reaction in particular with aliphatic aldehydes and the considerable confusion surrounding the conditions for obtaining exclusively or selectively any of the bicyclic isomeric products. In this paper we deal with this problem, analyzing the formation, structure, conformation, and thermodynamic parameters of the isomeric 2,6- disubstituted diacetals of threitol.

Results and Discussion

Condensation of rac-threitol with substituted acetaldehydes $\left(\mathrm{XCH}_{2} \mathrm{CHO}, \mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{Br}\right)$ (Scheme3), provided the 2,6-disubstituted-cis-TOD products, with the 2(eq), 6(eq)-derivative (1) as the main ones, accompanied by minute amounts of the new 2(eq),6(ax)-derivatives (2) (Scheme 3). In addition to those, there were variable amounts (around 30\%) of five-membered ring products (4-6). Careful workup made possible separation and isolation of all these products and their reliable characterization by NMR spectroscopy.

The NMR spectral data of theTOD ("66") products are presented in Tables 1 and 2. The chemical shifts and coupling constants in the $\mathrm{CH}-\mathrm{CH}_{2}$ group of the sixmembered ring in 1 (Table 1) are well defined (only $\mathrm{J}_{4(8) \mathrm{eq}, 10(9)}$ is mostly undinstinct and seen as signal broadening) and in excellent agreement with literature data and our previous investigations. ${ }^{3-6}$ NOE experiments on

[^1]H2(6) vs H4ax (8ax) and H9 (H10) supports the described structure in these molecules.

Contrary to $\mathbf{1}$, the ${ }^{1} \mathrm{H}$ NMR spectra of the new 2(eq), 6(ax)-di substituted-TOD compounds (2) exhibit two sets of signals. The first set, consisting of H2, H4ax, H4eq and H10, is similar (in both chemical shifts and coupling constants) to that observed in the ${ }^{1} \mathrm{H}$ NMR spectra of the symmetrical diequatorial system (1) in this work, as well as in previous ones (vide supra). The second set, consisting of H6, H8ax, H8eq, and H9, is different from the first one and unprecedented in previously reported TOD systems. Assignment of chemical shift was unequivocal on the basis of NOE experiments and analysis of the chemical shifts and coupling constants: irradiation of H2 enhanced the H4ax and H9 signals, whereas irradiation of H 6 enhanced $\mathrm{H} 8 \beta$ and that of H 12 enhanced $\mathrm{H} 8 \alpha$. The angular H 9 proton is shifted downfield (as compared with H9(10) in 1 and $\mathrm{H}(10)$ in 2) and coupled with $\mathrm{H} 8 \alpha, \mathrm{~J} 9,8 \alpha$ growing up to 5.9 Hz (as compared to 1.2 Hz in 1). $\mathrm{H} 8 \alpha$ was first concluded to be H8ax, and H8 β is H8eq, but the overall behavior was subsequently taken to stem from a fluctuational behavior in the C6-O7-C8 moiety within that ring.

The coupling constants in the second set, e.g., J ${ }_{8 \alpha, 9} 5.8$ Hz and J $8 \beta, 91.7 \mathrm{~Hz}$, reflect the fact that the dihedral angle $\mathrm{H} 9-\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \alpha$ becomes smaller ($\sim 30^{\circ}$) and $\mathrm{H} 9-\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8 \beta$ wider $\left(\sim 100^{\circ}\right)$ as compared with the diequatorial system (1). These changes in coupling constants fit a twist-boat conformation of the second ring in 2, which, following the above-described NOE results, exists within a chair/chair-chair/twist-boat conformational equilibrium $\mathbf{2} \rightleftharpoons \mathbf{7}$ (Scheme 4).

These structures are supported by ${ }^{13} \mathrm{C}$ NMR spectra, the details of which are presented in the Table 2. Assignment of ${ }^{13} \mathrm{C}$ signals was carried out using DEPT for all compounds and $\mathrm{C}-\mathrm{H}$ correlation for $\mathbf{2 b}$.

Our conclusions about the structures of and the conformational equilibrium between 2 and 7 are well sustained by molecular mechanics calculations of 1-3a (X $=\mathrm{H}$), carried out using the MM3 force field, ${ }^{8}$ which had been parametrized for the anomeric effect in $\mathrm{O}-\mathrm{C}-\mathrm{O}$ systems and which we have reparametrized (MM3-GE) ${ }^{\text {6b }}$ for the gauche effect in $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ containing systems. This modified MM3(92) ${ }^{\text {8c }}$ force field has been successfully used in the meantime on several similar systems. ${ }^{5,6 c-g}$ As evident, all our isomers contain both these types of dioxa ($\mathrm{O}-\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$) units and have to be treated accordingly. Relative stabilities of the lowest conformations of 1-3a are presented in Table 3.

These results lend strength to the conclusion that, at the reaction temperature ($80^{\circ} \mathrm{C}$) used, the unsymmetrical diastereomer 2a, inferred by the NMR spectrum in solution, is actually an equilibrium mixture of two stable conformers of similar energy, 2a and 7a (Scheme 4). The calculated data are in good agreement with the energy differences cal culated for the naked cis-TOD system, ${ }^{9}$ in which the chair/twist-boat form is about $5 \mathrm{kcal} / \mathrm{mol}$ higher

[^2]Table 1. ${ }^{1} \mathrm{H}$ NMR Spectral Data ($\mathrm{CDCl}_{3} / \mathrm{TMS}, 25^{\circ} \mathrm{C}$) of 2(eq), $6(\mathrm{eq})$-bis $\left(\mathrm{XCH}_{2}\right)$-cis-TOD ($\mathrm{X}=\mathrm{H}, \mathrm{CI}, \mathrm{Br}$) ($\mathbf{1 a - c}$) and 2(eq),6(ax)-bis(XCH2)-cis-TOD (X = H, CI, Br) (2a-c) (δ, ppm; J, a Hz)

	1a	1b	1c	2a	2b	2c
$\mathrm{H}_{2}$$\mathrm{H}_{4 \mathrm{eq}}$$\mathrm{H}_{4 \mathrm{ax}}$$\mathrm{H}_{9}$$\mathrm{H}_{11}$$\mathrm{H}_{6}$$\mathrm{H}_{8 \mathrm{ax}}$$\mathrm{H}_{8 \mathrm{eq}}$$\mathrm{H}_{10}$$\mathrm{H}_{12}$	4.78 (q)	4.80 (d^{2})	4.83 (d2)	4.74 (q)	4.79 (d^{2})	4.79 (d^{2})
	4.10 (d)	4.23 (d)	4.23 (d)	4.09 (d2)	4.21 (d^{2})	4.22 (d^{2})
	3.89 (d^{2})	3.94 (d2)	3.93 (d2)	3.85 (d^{2})	3.90 (d^{2})	3.89 (d2)
	3.61 (m)	3.70 (m)	3.67 (m)	3.92 (d3)	4.12 (d3)	4.11 (d3)
	1.41 (d)	3.60 (d)		1.41 (d)	3.58 (d)	3.42 (d)
				5.39 (q)	5.30 (d^{2})	5.30 (d^{2})
				4.17 (d^{2})	4.26 (d^{2})	4.26 (d^{2})
				3.85 (d^{2})	3.93 (d^{2})	3.92 (dd)
				3.72 (m)	3.79 (d3)	3.78 (d3)
				1.38 (d)	3.63 (d^{2}) (a)	3.47 (d2)(a)
					3.56 (d2)(b)	3.44 (d2)(b)
	$\mathrm{J} 2,11=5.1$	J $2,11=5.1$	$\mathrm{J}_{2,11 \mathrm{a}}=5.0$	$\mathrm{J} 2,11=5.1$	$\mathrm{J}_{2,11 \mathrm{a}}=4.8$	$\mathrm{J}_{2,11 \mathrm{a}}=4.8$
	$\int_{4 \text { eq, }, 4 \mathrm{ax}}=12.5$	$\int_{4 e q, 4 a x}=12.5$	$\int_{2,11 \mathrm{~b}}=5.0$	J 4eq,4ax = 13.0	$\int_{2,11 \mathrm{~b}}^{2,1}=4.8$	$\int_{2,11 \mathrm{~b}}=4.8$
	J $4 \mathrm{ax}, 10=1.3$	$\int_{4 a x, 10}=1.3$	$\int_{4 \times q, 4 a x}=12.6$	$\int_{4 \mathrm{eq}, 10}=1.2$	$\int_{4 e q, 4 a x}=12.9$	$\int{ }_{\text {eq, } 4 \mathrm{ax}}=12.7$
	$\int_{4 \mathrm{eq}, 10}<1$	$\int_{4 e q, 10}<1$	$\int_{4 a x, 10}=1.2$	$\int 4 \mathrm{ax}, 10=1.0$	$\int 4 \mathrm{eq}, 10=1.2$	$\int 4 \mathrm{eq}, 10=1.3$
				$\int 9,8 \mathrm{ax}=4.9$	$\int 4 a x, 10=1.7$	$\int 4 \mathrm{ax}, 10=1.6$
				$\int_{9,8 e q}=1.5$	J $9,8 \mathrm{ax}=5.8$	J $9,8 \mathrm{ax}=5.9$
				¢ 9,10~1.5	$\int 9,8 \mathrm{eq}=1.7$	$\int 9,8 \mathrm{eq}=1.7$
				$\int 6,12=5.3$	$\int 9,10=1.7$	$\int 9,10=1.7$
				$\int_{8 a x, 8 e q}=12.2$	$\int \begin{aligned} & 6,12 \mathrm{a}=5.2 \\ & 6,12 \mathrm{~b}=4.1\end{aligned}$	d, $6,12 \mathrm{a}=5.0$ $6,12 \mathrm{~b}=4.0$
					$\int \begin{aligned} & 6,12 \mathrm{~b}=4.1 \\ & 8 \mathrm{ax}, 8 \mathrm{eq}=12.3\end{aligned}$	$\int, 12 \mathrm{~b}=4.0$ $\int_{8 a \mathrm{a}, 8 \mathrm{eq}}=12.3$
					$\int^{12 a, 12 b}$ = 11.4	$\int^{12 a, 12 b}=11.2$

a Multiplicity: $\mathrm{d}=$ doublet $\left(\mathrm{d}^{2}=\mathrm{dd}, \mathrm{d}^{3}=\mathrm{ddd}\right), \mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{m}=$ multiplet.

Table 2. ${ }^{13} \mathrm{C}$ NMR Spectral Data ($\mathrm{CDCl}_{3} / \mathrm{TMS}, 25^{\circ} \mathrm{C}$) of 2,6-Disubstituted-TOD (1a-c, 2a-c) (δ, ppm)

	$\mathbf{1 a}$	$\mathbf{1 b}$	$\mathbf{1 c}$	$\mathbf{2 a}$	2b	2c
C2	98.9	100.1	100.1	98.4	99.6	99.2
C4	69.4	69.4	69.5	69.7	69.5	69.6
C9	69.6	69.4	69.5	70.9	71.3	71.3
C11	21.0	43.8	30.9	19.0	43.6	31.0
C6				94.0	95.3	94.7
C8				65.8	67.0	67.0
C10				62.2	63.3	63.3
C12				20.9	43.9	31.5

Scheme 4. Two Double-Chair (2) and Chair/ Twist-Boat (7) Forms of

2S,6R-Disubstituted-cis-TOD

Table 3. Calculated (MM3-GE) Relative Free E nergy Differences of 2,6- Dimethyl-TOD (1-3a) in Their Lowest Minima Conformations (kcal/mol)

conformation $^{\text {a }}$	
	$\Delta \mathrm{G}^{353}$ rel
2(eq),6(eq)-dimethyl-cis-TOD (Oinside) (1a)	0.0
2(eq),6-dimethyl-1,3-c-5,7-tb-cis-TOD (Oinside) (7a)	4.4
2(eq),6(ax)-dimethyl-cis-TOD (2a) (Oinside)	5.1
2(eq),6(eq)-dimethyl-cis-TOD (Ooutside)	5.4
2(eq),6-dimethyl-1,3-c-(Ooutside)-5,7-tb-cis-TOD	7.7
2(ax),6(ax)-dimethyl-cis-TOD (Oinside) (3a)	11.1
2(ax),6(eq)-dimethyl-cis-TOD (Ooutside)	13.2
2(ax),6(ax)-dimethyl-cis-TOD (Ooutside)	2.1

${ }^{\mathrm{a}} \mathrm{c}=$ chair; tb = twist-boat.
than the chair/chair, with a ca. $10 \mathrm{kcal} / \mathrm{mol}$ barrier between them. M oreover, there is good agreement of the calculated free energy difference between the diastereomers $\mathbf{1 a}$ and $\mathbf{2 a} / \mathbf{7 a}$ with the experimental ratio of these diastereomeric products (ca. 1000:1). Interestingly, the high-energy 2(ax),6(ax)-cis-TOD-Oinside diastereomer 3a could conformationally invert into the 2(eq),6(eq)-cis-TOD-Ooutside one, which is of similar free energy as conformers 2a and 7a, but was not found among the reaction products. We will address this issue later.

Turning to the diastereomeric $2,2^{\prime}$-disubstituted-4, 4^{\prime} -bi(1,3-dioxolanyl) (BDO) (4-6) products (Scheme 3)

[^3] THEOCHEM 1996, 370, 221.
isolated from the reactions of threitol with the mentioned substituted aldehydes, they could be well characterized by their NMR spectra, the data of which are presented in Tables 4 and 5. It merits recalling at this point that a related issue, 1,3-dioxolane vs 1,3-dioxane formation in acetalation of glycerol, has been receiving continuing attention. ${ }^{10}$

The ${ }^{1} \mathrm{H}$ NMR spectra (Table 4) of each and all "cis,trans" compounds (5) are practically superimposed spectra of the symmetrical "cis,cis" (6) and "trans,trans" (4) diastereomers, except the H 4 and H 4 ' signals, which are close but changed places. This was established by irradiation of the low field "ddd"-signal. The configurational assignments within the 4,4'-BDO systems were supported by NOE experiments on compound 5c, namely, irradiation of the low-field H2 signal, enhanced those of H5cis and $\mathrm{H} 4^{\prime}$, and that of the high-field $\mathrm{H} 2^{\prime}$ signal, enhanced H5'trans and H4'. These findings are in very good agreement with the available ${ }^{10 d, e}$ detailed NMR data of cis- and trans-2-methyl-4-XCH 2 -1,3-dioxolanes.

N otably, in all cases the isomers of 4,5, and 6 occur in statistic ratio, i.e., 1:2:1 and are not substituent dependent, which means that no significant free energy differences of those isomers should be anticipated. This was nicely confirmed by MM3-GE ${ }^{9}$ calculations, the results of which are presented in Table 6.

Our interest in the intimate behavior of substituted TOD systems and the peculiar phenomena we encountered in the first stages of this investigation compelled us to probe the reaction mechanism and optimization conditions of the described double acetalation process. We chose the reaction of rac-threitol with bromoacetaldehyde as a model for this purpose, 2,6 -bis(bromomethyl)-TOD (1c) having been designed as a useful starting material in our past ${ }^{6 f}$ and present investigations.

The yields of crude product in this reaction were, as a rule, nearly quantitative, and of the products (1c, 2c, 4c, $\mathbf{5 c}, \mathbf{6 c}$), 1c could be crystallized from methanol in pure form and the rest was resolved when needed, by column

[^4]

a Multiplicity: $\mathrm{d}=$ doublet $\left(\mathrm{d}^{2}=\mathrm{dd}, \mathrm{d}^{3}=\mathrm{ddd}\right)$, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad. ${ }^{\mathrm{b}}$ cis and trans designations (including subscripts) refer to the central $4,4^{\prime}$ bond.

Table 5. ${ }^{13} \mathrm{C}$ NMR Spectral Data ($\mathrm{CDCl}_{3} / \mathrm{TMS}, 25^{\circ} \mathrm{C}$) of 2,2-bis(XCH_{2})-4,4'-BDO (X = H, CI, Br) (4a-c, 5a-c, 6a-c) (δ, ppm)

	$\mathbf{4 a}$	$\mathbf{4 b}$	$\mathbf{4 c}$	$\mathbf{5 a}$	$\mathbf{5 b}$	$\mathbf{5 c}$	$\mathbf{6 a}$	$\mathbf{c} \mathbf{6 b}$	$\mathbf{6 c}$
C_{2}	102.2	103.0	102.6	102.2	103.3	102.7	102.2	102.6	102.4
C_{4}	75.8	76.2	76.3	76.1	76.5	76.6	76.3	76.1	76.3
C_{5}	66.6	67.0	67.1	66.4	67.0	66.9	66.0	66.4	66.5
C_{6}	19.8	44.5	32.4	19.8	44.5	32.4	19.5	43.8	31.7
$\mathrm{C}_{2^{\prime}}{ }^{\prime}$				102.2	103.1	102.6			
$\mathrm{C}_{4^{\prime}}$				76.3	75.9	75.8			
$\mathrm{C}_{5^{\prime}}$				66.1	66.4	66.4			
$\mathrm{C}_{6^{\prime}}$				19.5	43.9	31.7			

Table 6. Calculated (MM3-GE) Relative Free Energy Differences of 2,2-Dimethyl-4,4'-bi (dioxolanyl) (4-6a) in Their Lowest Minima Conformations (kcal/mol)

diastereomer	conformation	$\Delta \mathrm{G}^{353} \mathrm{rel}$
trans,trans-4a	H4-C4-C4'- 4^{\prime} anti	0.8
	C5-C4-C4'-C5' anti	0.7
	O3-C4-C4'-O3' anti	1.4
cis,trans-5a	H4-C4-C4'- ${ }^{\prime} 4^{\prime}$ anti	0.0
	C5-C4-C4'-C5' anti	0.4
	O3-C4-C4'-O3' anti	0.7
cis,cis-6a	${ }^{\mathrm{H}} 4-\mathrm{C} 4-\mathrm{C} 4^{\prime}-\mathrm{H} 4^{\prime}$ anti	0.2
	C5-C4-C4'-C5' anti	1.1
	O3-C4-C4'-O3' anti	0.9

Table 7. Yields of $\mathbf{1 c}$ in Various Reaction Conditions (Scheme 3)

no.	temp, ${ }^{\circ} \mathrm{C}$	[PTSA]/[threitol]	time, h	yield, $\%$
1	80^{a}	157	16	70
2	80^{a}	7	16	60
3	80^{a}	116	2	65
4	80^{a}	19	2	25
5	80^{a}	9	5	60
6	110^{a}	9	12	55

${ }^{\mathrm{a}}$ In refluxing benzene; ${ }^{\mathrm{b}}$ In refluxing toluene.
chromatography. The yields of $\mathbf{1 c}$ in some such experiments are presented in Table 7, showing that they depend on the reaction temperature, on the concentration of PTSA, and on the reaction time. These results were taken as an indication that $\mathbf{4 c} \mathbf{- 6 c}$ are produced under "kinetic control" (Table 7, no. 1), after which an equilibration process between $\mathbf{4 c}-\mathbf{6 c}$ and $\mathbf{1 c}$ sets in, depending on temperature and concentration of acid (PTSA). We proceeded probing the mechanism of the reaction depicted in Scheme 5. As shown above, isomers 4c, 5c, and 6c were calculated to have nearly the same free energies, and were obtained in statistical ratio. This justified using

Scheme 5. Thermodynamically Controlled Acid Promoted Reaction Modes of Threitol with 2-Bromoacetaldehyde

the entire mixture of diastereomers as 55 alongside the TOD product (1c), henceforth 66, to probe the acid (A)promoted equilibrium.

Thus, the following expressions could be set up, defining the equilibrium constants for the three equilibria (eqs 1,2 , and 3) and, since we are measuring de facto overall concentrations [66]+[66A] and [55]+[55A] (eqs 4 and 5), the observed equilibrium constants ($\mathrm{K}_{\mathrm{obs}}$) can be expressed as in eq 6, where [A] is a function of substrate concentration ([S]) and starting concentration of PTSA [A] ${ }^{\circ}$ and can be expressed by eq 7. Hence, we performed a number of reactions, varying the concentrations of substrate ($\mathbf{1 c}$ or $\mathbf{4 c}-\mathbf{6 c}$) and PTSA. The reactions were monitored by GC and/or NMR, and the results are presented in Table 8. A plot of the resulting $\mathrm{K}_{\text {obs }}$ vs the initial acid concentrations ([A] ${ }^{\circ}$) was made (Figure 1), and the three equilibrium constants ($\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$) were optimized in a nonlinear regression procedure, based on eqs 6 and 7 and the experimental data.

$$
\begin{equation*}
K_{1}=\frac{[55 A]}{[55][A]} \tag{1}
\end{equation*}
$$

Table 8. $K_{\text {obs }}$ in the Equilibria between 2(eq),6(eq)-bis(bromomethyl)-cis-Tod (1c) and All Isomers of 2,2-bis(bromomethyl)-4,4'-BDO (4-6c) (Scheme 5)

no.	start. mater.	[S] $\times 10^{3}$	$[\mathrm{A}]^{0} \times 10^{3}$	[S]/[A] ${ }^{0} \times 10^{2}$	time, h	Kobs
1	$\mathbf{1 c}^{\text {a }}$	19.1	8.4	228	160	1.63
2	1c ${ }^{\text {a }}$	18.4	18.6	100	50	1.82
3	$1 c^{\text {a }}$	19.4	34.6	56	30	2.14
4	1c ${ }^{\text {b }}$	22.3	5.1	437	100	1.72
5	1c ${ }^{\text {b }}$	10.7	35.0	31	50	2.03
6	1c ${ }^{\text {b }}$	6.2	44.0	14	50	2.25
7	4-6ca	10.4	9.4	111	50	1.56
8	4-6ca	25.0	37.4	67	30	2.17
9	4-6ca	1.7	150	1.13	2	2.48
10	4-6ca	1.7	350	0.49	1	3.00
11	4-6ca	1.7	530	0.32	1	3.06
12	4-6ca	1.7	1340	0.13	1	3.09

a By GC. b By NMR.

Figure 1. Experimental and calculated dependence of $K_{\text {obs }}$ on initial concentration of PTSA, in the equilibrium between 2(eq),6(eq)-bis(bromomethyl)-cis-tetraoxadecalin (1c) and 2,2'-bis(bromomethyl)-4,4'-bi(dioxolanyl) (4c-6c) in boiling benzene.

$$
\begin{align*}
& K_{2}=\frac{[66 A]}{[55 A]} \tag{2}\\
& K_{3}=\frac{[66 A]}{[66][A]} \tag{3}\\
& {[\mathbf{S}]=[55]+[66]+[55 A]=[66 A]} \tag{4}\\
& {[A]^{\circ}=[A]+[55 A]+[66 A]} \tag{5}\\
& \mathrm{K}_{\text {obs }}=\frac{[66]+[66 \mathbf{A}]}{[55]+[55 \mathbf{A}]}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2} *\left(\frac{1}{K_{3}}+[\mathbf{A}]\right)}{1+\mathrm{K}_{1}[\mathbf{A}]} \tag{6}\\
& {[\mathbf{A}]=-0.5\left(\frac{\mathrm{~K}_{1} \mathrm{~K}_{2}+\mathrm{K}_{3}}{\mathrm{~K}_{1} \mathrm{~K}_{3}\left(1+\mathrm{K}_{2}\right)}+[\mathbf{S}]-[\mathbf{A}]^{\circ}\right)+} \\
& \sqrt{0.25\left(\frac{K_{1} K_{2}+K_{3}}{K_{1} K_{3}\left(1+K_{2}\right)}+[\mathbf{S}]-[\mathbf{A}]^{0}\right)^{2}+\frac{K_{1} K_{2}+K_{3}}{K_{1} K_{3}\left(1+K_{2}\right)} *[\mathbf{A}]^{\circ}} \tag{7}
\end{align*}
$$

In the optimization process, different starting parameters were used in the interval from 0 to 10^{6}, and the calculated results ($\mathrm{K}_{1}=15 \pm 4 ; \mathrm{K}_{2}=3.2 \pm 0.1 ; \mathrm{K}_{3}=32$ $\pm 9 \mathrm{l} / \mathrm{mol}$) correspond to a unique global minimum. The suggested model appears, therefore, to be correct, and the equilibrium constants can be safely used for the calculation of thermodynamic parameters. A free energy
$\Delta \mathbf{G}, \mathbf{K J} / \mathrm{mol}$

Figure 2. The free energy diagram of the equilibrium between 2(eq),6(eq)-bis(bromomethyl)-cis-tetraoxadecalin (1c) and 2,2'-bis(bromomethyl)-4,4'-bi(dioxolanyl) (4c-6c) in boiling benzene in the presence of PTSA.
diagram for the set of three equilibria is presented in Figure 2, in which the species involved appear in the stability order (kcal/mol): 66A (0.0), 55A (0.8), 66 (2.5), and 55 (2.7).

Making the reasonable assumption that the rearrangement step itself $(66 A \rightleftharpoons 55 A)$ has a lower rate constant, i.e., a higher barrier (without going into the nature of this process) associated with it, than the flanking two and that the Curtin-Hammett principle does not apply, we may conclude that the equilibrium between 66 ($=1 \mathrm{c}$) and $55(=\mathbf{4 c}-\mathbf{6 c})$ depends on the free energy difference between 66A and 55A. Increasing the PTSA concentration caused not only reduction of the time to reach equilibrium (i.e., increase of the reaction rate), but also growth of the 66A mole fraction and, consequently, $\mathrm{K}_{\mathrm{obs}}$ (Table 8). On the other hand, raising the temperature caused a decrease in the yield of $\mathbf{1 c}$ (no. 6 in Table 7). This relative increase in the population of 55A can be easily rationalized in terms of its enhanced entropy on two accounts: its (rotationally) flexible molecular frame and its being a mixture of at least three (4c, 5c, and 6c) diastereomers.

Notably, the equilibrium between $\mathbf{1 c}$ and $\mathbf{4 c} \mathbf{- 6 c}$ depends on the kind of acid used: all other things being equal, $\mathrm{K}_{\text {obs }}$ for PTSA, Dowex, and TFA were about 2.8, 0.72 , and 0.71 , respectively. Thus, the association energy depends not only on the "acidity", but also on the structure of the proton carrier (e.g., large steric interference by Dowex); be that as it may, the highest association energy was achieved by cis-TOD-(Oinside) with PTSA.

Theoretical support to this mechanistic picture can be found in the results of a computational ab initio study we have recently reported, in which, among the three possible TOD diastereomers (Scheme 6), ${ }^{69}$ cis-TOD-Oinside exhibits the highest proton affinity, way outside the range of $\mathrm{O}-\mathrm{C}-\mathrm{O}$ anomeric systems, which are known to be relatively weak bases, ${ }^{11 a}$ but similar to the stronger gauche $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ bases. ${ }^{11 \mathrm{~b}}$ This is due, in large measure, to the strong intramolecular hydrogen bonds within the cavity of cis-TOD-Oinside (Scheme 6). The fact that the 2(eq),6(eq)-disubstituted-cis-TOD-Ooutside species (i.e., the ring-inverted form of 2(ax),6(ax)-cis-TOD-Oinside) is practically absent in the reaction product, despite its calculated energy being similar to that of $\mathbf{2}$ and $\mathbf{7}$
(11) (a) Ganguly, B.; Fuchs, B. J. Org. Chem. 1997, 62, 8892. (b) Ganguly, B.; Fuchs, B. J. Org. Chem., in press.

Scheme 6. Relative Energies and Proton Affinities (in kcal/mol) of trans- and cis-TOD-Oinside and -Ooutside, Taken from Ref $\mathbf{6 g}$ (calculated using Gaussian 94 at the MP2/6-31+G* level)

188.8

199.9

189.0

Scheme 7. Acetalation Reaction Products of D-Threitol with Methyl Glyoxylate

(Table 3), is evidently due its much lower protonation energy. It should be mentioned that a similar calculation of the BDO system has not yet been performed, due to the CPU exigency of the job.
It is at this point that we see fit to present the findings that actually triggered the above-reported investigation and which stemmed from our keen interest in TOD systems with functionalized substituents, as cores for novel macromolecular systems. These are the results of the condensation of rac-threitol with methyl glyoxylate ($\mathrm{MeO}_{2} \mathrm{CCHO}$) (Scheme 7), viz., all three isomers of bis-(methoxycarbonyl)-1,3,5,7-cis-TOD, which were individually isolated, viz., 2(eq),6(eq) (1d), 2(eq),6(ax) (2d) and (the only existing case of) 2 (ax), 6 (ax) (3 d) in $20 \%, 15 \%$, and 2% yield, respectively, along with the $2,2^{\prime}$-bis-(methoxycarbonyl)-4,4'-BDO isomers: 4d, 5d, and 6d, which were obtained in 25% yield and 1:2:1 ratio (as evaluated by NMR of the mixture) and could not be separated. The detailed NMR data (strengthened by NOE and DEPT studies) are given in Table 9 and are illuminating, due to the presence of the hitherto unavailable 2(ax),6(ax) form (3d). Both the ${ }^{1 H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the 2(eq),6(ax)-isomer (2d), exhibit two sets of signals, as before (vide supra). The first set in each spectrum is similar to that observed in the spectrum of the symmetrical diequatorial system (1d), while the second set resembles that of 2(ax),6(ax)-bis(methoxycar-bonyl)-1,3,5,7-cis-TOD (3d). The fact that axially 2(6)substituted species (2d, 3d) are relatively well populated in this case is clearly due to the methoxycarbonyl substituent. The latter's relative propensity to assume
axial conformation (which explains why no ring inverted tb species are seen in this case) is due to its intrinsical low conformational energy ($1.2 \mathrm{kcal} / \mathrm{mol})^{12}$ (its periodicity number is 6) and to a possible anomeric effect. ${ }^{6 e}$ This is now being looked into.

Conclusion

We have unraveled the ther modynamic features of the diacetalation reaction of threitol with alkylaldehydes and the details of the dependence of the ratios of the bicyclic cis-tetraoxadecalin (TOD) ("66") and bi (dioxolanyl) (BDO) ("55") products, on acid-concentration and temperature. The isomeric diacetals obtained in four such reactions of substituted aldehydes ($\mathrm{RCHO}, \mathrm{R}=\mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Br}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$) with rac-threitol were isolated and characterized configurationally and conformationally. A variable acid-concentration analysis of the equilibrium mixture of products in one such case ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{Br}$) was performed and provided equilibrium constants and, hence, freeenergy differences among these products and their unprecedented stable protonated intermediates. The latter were rationalized by the unusually high protonaffinity cal culated for the cis-TOD ("66") form (which can be extrapolated to further threo-tetraol diacetals). Attempts to ferret out (mass spectrometrically) these and similar stable protonated species are in course.

Experimental Section

General. Melting points were recorded on a capillary melting point apparatus and are uncorrected. The NMR spectra were obtained on 200, 360, and 500 MHz NMR spectrometers. All ${ }^{1} \mathrm{H}$ chemical shifts are in ppm and δ-values are relative to TMS as internal standard. ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm relative to CDCl_{3} (center of triplet $\delta 77.0$) Mass spectra (DEI-MS, DCI-MS, and FAB) were recorded on an Autospec 250 mass-spectrometer. Commercial solvents and reagents were used without purification. Chromatographic separations were performed on a silica gel 60 column, eluting with gradient petroleum ether:ethyl acetate (9:1 to 1:1). Nonlinear regression optimizations were performed using Origin 4.0. While we deal with racemic mixtures throughout, the designation is made throughout on D-threitol products. ${ }^{16}$ Elemental analyses were not performed, since we deal with isomeric mixtures. Mass spectral (EI) analyses were performed in each case, and the molecular ions were observed only for the methyl-substituted TOD and BDO products; otherwise the fragment $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{X}$ was the first and most abundant one. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were the diagnostic tool (see text) and are given in detail in Tables 1, 2, 4, 5, and 9.

Acetalation of rac-Threitol with Acetaldehyde. To a mixture of rac-threitol ($1.2 \mathrm{~g}, 10 \mathrm{mmol}$) and Dowex- $\mathrm{H}^{+}(2.6 \mathrm{~g})$ in dichloromethane (200 mL) was added $1.5 \mathrm{~mL}(27 \mathrm{mmol})$ of acetaldehyde, and the mixture was refluxed with separation of water in a Dean-Stark adapter. The organic solution was filtered and evaporated. The crude product (1.6 g , yield 92%) was separated by column chromatography. The first three fractions eluted were the three 2,2'-dimethyl-4,4'-bi (1,3-dioxolanyl) isomers in the order: 6a, 4a, and 5a. The fourth fraction consisted of a minutequantity of the 2(eq),6(ax) isomer (2S,6R,9R;9,10-M)-dimethyl-1,3,5,7-cis-tetraoxadecalin (2a), and the last fraction was the 2(eq),6(eq) isomer ($2 \mathrm{~S}, 6 \mathrm{~S}, 9 \mathrm{R} ; 9,-$ 10-M)-dimethyl-1,3,5,7-cis-tetraoxadecalin (1a) ($1.5 \mathrm{~g}, 87 \%$).

Acetalation of rac-Threitol with 2-Chloroacetaldehyde. To a solution of PTSA ($0.33 \mathrm{~g}, 1.7 \mathrm{mmol}$) in water (20 mL) was added chloroacetaldehyde dimethylacetal (5.7 mL , 50 mmol), and the reaction mixture was stirred at $60-65^{\circ} \mathrm{C}$

[^5]Table 9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectral Data ($\mathrm{CDCl}_{3} / \mathrm{TMS}, 25^{\circ} \mathrm{C}$) of 2(eq),6(eq)- Bis(methoxycarbonyl) cis-Tod (1d), 2(eq),6(ax)-bis(methoxycarbonyl)-cis-Tod (2d), and 2(ax),6(ax)-Bis(methoxycarbonyl)-cis-Tod (3d) (δ, ppm; J , Hz)

| | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

a Multiplicity: $d=$ doublet $\left(d^{2}=d d, d^{3}=d d d\right), t=$ triplet, $q=$ quadruplet, $m=$ multiplet, $b=$ broad.
for 5 h , until the solution became clear, indi cating full acetal hydrol ysis (by NMR). This aqueous solution was continuously extracted with dichloromethane for 48 h , and the chloroacetaldehyde solution was continuously transferred to a mixture of rac-threitol ($3 \mathrm{~g}, 24 \mathrm{mmol}$) and Dowex- $\mathrm{H}^{+}(5 \mathrm{~g})$ in boiling dichloromethane (250 mL). The resulting solution was filtered and evaporated. The crude product (5.3 g , yield 91%) was crystallized from ethyl acetate, to give the 2(eq),6(eq) (2S, 6S,9R;9,10-M)-bis(chloromethyl)-1,3,5,7-cis-tetraoxadecal in (1b) ($3.4 \mathrm{~g}, 58 \%$). Evaporation of the mother liquor gave an oil, which was separated by column chromatography. The first three products were the $2,2^{\prime}$-bis(chloromethyl)-4,4'-bi(1,3dioxolanyl) isomers, in the order: 4b, 6b, and $\mathbf{5 b}$. The fourth fraction consisted of a minute quantity of the 2(eq),6(ax) (2S,6R,9R;9,10-M)-bis(chloromethyl)-1,3,5,7-cis-tetraoxadecalin (2b) and the last product of additional $\mathbf{1 b}$.
Acetalation of rac-Threitol with 2-Bromoacetaldehyde. To a solution of PTSA ($4.85 \mathrm{~g}, 25 \mathrm{mmol}$) in water (25 mL) was added bromoacetaldehyde dimethylacetal ($5 \mathrm{~mL}, 41$ mmol), and the reaction mixture was stirred at $60-65^{\circ} \mathrm{C}$ for 4 h , until the solution became clear, indicating full acetal hydrolysis (by NMR). rac-Threitol ($2 \mathrm{~g}, 15.9 \mathrm{mmol}$) was added, along with 150 mL of benzene. The mixture was refluxed overnight under Ar, using a Dean-Stark adapter. After cooling, the organic solution was washed with 10% aqueous sodium carbonate (20 mL), dried with calcium chloride, and evaporated. The crude product ($5.1 \mathrm{~g}, 97 \%$) was crystallized from methanol, to give 1c ($2.1 \mathrm{~g}, 40 \%$). Evaporation of the mother liquor provided an oil, which was separated by column chromatography. The first three fractions were the $2,2^{\prime}$-bis-(bromomethyl)-4,4'-bi(1,3-dioxolanyl) isomers, in the order: 4c, $\mathbf{6 c}$, and $\mathbf{5 c}$. The fourth fraction consisted of a minute quantity of 2(eq),6(ax)-bis(chloromethyl)-1,3,5,7-dis-tetraoxadecalin (2c) and the last fraction was additional $\mathbf{1 c}$.

Acetalation of rac-Threitol with Methyl Glyoxylate. To a solution of PTSA ($0.25 \mathrm{~g}, 1.3 \mathrm{mmol}$) and dimethoxyacetic acid methyl ester (methyl glyoxylate dimethyl acetal) (1.24 g , 9.3 mmol) in water (5 mL) was added rac-threitol ($0.4 \mathrm{~g}, 3.28$ mmol) followed by 40 mL of benzene. The mixture was refluxed overnight under Ar, using a Dean-Stark adapter. The benzene overlayer was decanted, and the residual viscous oil was dissolved in methanol (40 mL). The resulting solution was concentrated and taken up in chloroform. This solution was
washed with water and aq $\mathrm{K}_{2} \mathrm{CO}_{3}$, dried on MgSO_{4}, filtered, and evaporated. The residue was separated by column chromatography, to give first three fractions (the NMR spectra are assembled in Table 9):
(2S,6S,9R;9,10-M)-Bis(methoxycarbonyl)-1,3,5,7-cis-TOD (2(eq),6(eq)) (1d) ($175 \mathrm{mg}, 20 \%$). mp: $136.5-137.5^{\circ} \mathrm{C}$ (from EtAc). TLC: $R_{f}=0.28$ (EtAc, silica gel). EI-MS (70 eV): m/z (\%) 261 ([M - H $\left.{ }^{+}, ~ \sim 1\right), ~ 203(100) ; ~ 115(19) . ~ F A B-M S ~(70 ~ e V): ~$ $\mathrm{m} / \mathrm{z}(\%) 263$ ([MH] $\left.{ }^{+}, 100\right), 203$ (91). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{8}$ (262.22): C, 45.81; H, 5.38. Found: C, 45.98; H, 5.49.
(2S,6R,9R;9,10-M)-Bis(methoxycarbonyl)-1,3,5,7-cis-TOD (2d) (2(eq), $6(a x))(130 \mathrm{mg}, 15 \%)$. TLC: $\mathrm{R}_{\mathrm{f}}=0.56$ (EtAc, silica gel). EI-MS (70 eV): m/z (\%) 203 (100), 115 (47). FAB-MS (70 eV): m/z (\%) 263 ([MH] $\left.{ }^{+}, 66\right), 203$ (100).
(2R,6R,9R;9,10-M)-Bis(methoxycarbonyl)-1,3,5,7-cis-TOD (3d) (2(ax), $6(a x))(2 \mathrm{mg}, 2 \%)$. TLC: $R_{f}=0.73$ (E.A, silica gel). EIMS (70 eV): m/z (\%) 203 (100), 115 (40).
The following fraction ($220 \mathrm{mg}, 25 \%$) was a mixture of the 2,2'-bis(methoxycarbonyl)-4,4'-bi (dioxol anyl) isomers: 4d, 5d, and $\mathbf{6 d}$, in 1:2:1 ratio (from the NMR spectrum of the mixture).

Equilibrium Studies. A solution of PTSA in benzene was refluxed for 2 h , using a Dean-Stark adapter under Ar, after which, was added a mixture of substrate ($\mathbf{1 c}$ or $\mathbf{4 c}-\mathbf{6 c}$) with biphenyl (as an inert GC internal standard) in mole ratio 1:1. Samples weretaken through an immersed capillary tube using positive Ar pressure, washed with 10\% aqueous sodium carbonate, and examined by GC or, after evaporation of benzene, by ${ }^{1} \mathrm{H} \mathrm{NMR}$ in CDCl_{3}. Every experiment was finished when the ratio between $\mathbf{1 c}$ and $\mathbf{4 c} \mathbf{- 6 c}$ remained unchanged. Chromatographic analysis were run on a Varian 3400 instrument with TCD on Megabor DB5 column ($15 \mathrm{~m} \times 0.53 \mathrm{~mm}$, He carrier gas flow $30 \mathrm{~mL} / \mathrm{min}$, column temperature from 60 to $200^{\circ} \mathrm{C}$ with gradient $15 \mathrm{deg} / \mathrm{min}$). The retention times of biphenyl, 4c-6c and $\mathbf{1 c}$ were 4.7, 8.1, and 8.4 min, respectively.

Acknowledgment. This work was supported in part by grants from the Israel Science Foundation and the Ministry of Science and by an Intel scholarship (to N.G.L.). Ms. Diana Glazer provided able undergraduate student research assistance.

J 09908952

[^0]: * To whom correspondence should be addressed. Fax: (+972-3) 640 9293; e-mail: bfuchs@post.tau.ac.il.
 (1) (a) New Supramolecular Host Systems. 12. Part 11: Star, A.; Goldberg, I.; Lemcoff, N. G.; Fuchs, B. Eur. J . Org. Chem. 1999, 2033. (b) We use consistently the 1,3,5,7-tetraoxadecalin nomenclature. Other possible names are cis- or trans-2,4,7,9-tetraoxabicyclo[4.4.0]decane, 1,3:2,4-di-O-methylenethreitol, or (cf. CA) (4aR)-(4ar,8ac)-tetrahydro-[1,3]dioxino[5,4-d]-1,3-dioxin. Also, due to a minor but basic omission of the CIP rules, one can assign unequivocally configurations to chiral cis-decalin systems, only by 9,10-helicity designation, e.g., molecule 3c is (2R,6R,9R;9,10-M)-2,6- bis(bromomethyl)-cis-1,3,5,7-tetraoxadecalin.
 (2) (a) Lemieux, R. U.; H oward, J. Can. J . Chem. 1963, 41, 393. (b) Nouguier, R.; Gras, J.-L.; Mchich, M. Tetrahedron 1988, 44, 2943. (c) Gras, J.-L.; Poncet, A. Synth. Commun. 1992, 22, 405.
 (3) (a) J ensen, R. B.; Buchardt, O.; J ørgensen, S. E.; Nielsen, J. U. R.; Schroll, G.; Altona, C. Acta Chem. Scand. B 1975 29B, 373. (b) Nørskov, L.; J ensen, R. B.; Schroll, G. Acta Chem. Scand. B 1983 37B, 133 and previous parts in this series.
 (4) (a) Burden, I. J.; Stoddart, J . F.; J Chem. Soc., Perkin Trans. 1 1975, 666. (b) Idem. I bid. 1975, 675.
 (5) Santos, A. G.; Hoffman, R. W. Tetrahedron: Asymmetry 1995, 6, 2767.
 (6) (a) Senderowitz, H.; Linden, A.; Golender, L.; Abramson, S.; Fuchs, B. Tetrahedron 1994, 50, 9691. (b) Senderowitz, H.; Golender, L.; Fuchs, B. Tetrahedron 1994, 50, 9707. (c) Abramson, S.; Ashkenazi, E.; Goldberg, I.; Greenwald, M.; J atzke, H.; Vardi, M.; Weinman, S.; Fuchs, B. J. Chem. Soc., Chem. Commun. 1994, 1611. (d) Frische, K.; Greenwald, M.; Ashkenazi, E.; Lemcoff, N. G.; Abramson, S.; Golender, L.; Fuchs, B. Tetrahedron Lett. 1995, 36, 9193. (e) J atzke, H.; Frische, K.; Greenwald, M.; Golender, L.; Fuchs, B. Tetrahedron 1997, 53, 4821. (f)' Grabarnik, M.; Goldberg, I.;'Fuchs, B. J . Chem. Soc., Perkin Trans. 1 1997, 3123. (g) Linden, A.; Beckhaus, H.-D.; Verevkin, S. P. Rüchardt, Chr.; Ganguly, B.; Fuchs, B. J. Org. Chem. 1998, 63, 8205.

[^1]: (7) (a) Barker, S. A.; Bourne, E. J . Adv. Carbohydr. Chem. 1952, 7, 138. (b) Mills, A. Adv. Carbohydr. Chem. 1955, 10, 1. (c) Stoddart, J. F. Stereochemistry of Carbohydrates; Wiley: New York, 1971; p 210. (d) Foster, A. B. In The Carbohydrates; Pigman, W., Horton, D., Eds.; Academic Press: New York, 1972; Vol. 1A, Ch. 11. (e) Cf. ref 6e for a short but relevant review on carbohydrate TOD derivatives.

[^2]: (8) (a) MM3 is available from QCPE (latest public version); the official distributors are Technical Utilization Corporation, Inc., 235 Glen Village Court, Powell, OH 43065, and Tripos Associates, 1699 S. Hanley Road, St. Louis, MO 63144. (b) Allinger, N. L.; Yuh, Y. H.; Lii, J.-H.; J. Am. Chem. Soc. 1989, 111, 8551 and subsequent articles, in particular that on alcohols and ethers: (c) Allinger, N. L.; Rahman, M.; Lii, J.-H. J. Am. Chem. Soc. 1990, 112, 8293, subsequently updated in MM3(92) for the anomeric effect by P. Aped. (d) MM3-GE6b is a reparametrized version for the gaucheeffect in $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$-containing systems.

[^3]: (9) Golender, L.; Senderowitz, H.; Fuchs, B. J. Mol. Struct.

[^4]: (10) (a) Hibbert, H.; Carter, N. M. J . Am. Chem. Soc. 1928, 50, 3120. (b) Hill, H. S.; Hill, H. C.; Hibbert, H. J. Am. Chem. Soc. 1928, 50, 2242. (c) Aksnes, G.; Albriktsen, P.; J uvvik, P. Acta Chem. Scand. 1965, 19, 920. (d) Borremans, F.; Anteunis, Anteunis-De Ketelaere, F. M. Org. Magn. Res. 1973, 5, 299. (e) Gras, J.-L.; Poncet, A. Bull. Soc. Chim. Fr. 1991, 128, 566.

[^5]: (12) Eliel, E. L.; Willen, S. Stereochemistry of Carbon Compounds; Wiley: New York, 1994; p 696.

